What if you could give your future self a tax break? What if you could make a decision now that would save your business money later on? As the end of year approaches, now is the time to get in your tax-deductible purchases. For many compounding pharmacies, equipment is a necessary expense that can quickly add up. Fortunately pharmacy equipment is one of those business expenses that can be tax-deductible. Here’s what you need to know to make sure you benefit from equipment tax breaks.
You will get efficient and thoughtful service from Dolang.
According to Section 179 of the United States IRS Tax Code, businesses are allowed to immediately deduct (or write off) from their taxable income the full purchase price of qualified equipment and/or software that is purchased or financed and put into use before December 31, — the fiscal year-end for most businesses.
We spoke to our financial partners at Independent Rx, a consulting firm dedicated to, among other things, increasing a pharmacy’s profitability. President Owen Bondurant and Tax Director Jim Sunderland both said:
"While tax planning is an all-year exercise, everyone tends to take a more detailed look towards the end of the year. At this time of year, we ask pharmacies we work with what their goals are for the following year. Do they include new technology and equipment? If so, pharmacies should consider purchasing the equipment by November, because the equipment has to be in service by December 31 in order for them to take the Section 179 deduction."
Takeaway here – make sure you purchase your equipment in advance to ensure it is in use before the end of the year and consult with your supplier representatives on lead times.
The shorter the time between the purchase and filing your taxes — the quicker the savings. Purchasing equipment at the end of the fiscal year means you only need to wait a few months until you file your corporate income tax returns on April 15, , to see the benefit.
The IRS recognizes equipment that will last more than one year and is used at least 50% of the time for business operations. There are some exceptions, and not all equipment may qualify. It is recommended that you consult with your tax advisor for further details.
The Section 179 Deduction Limit is $1,220,000 for the amount that can be written off.
As your Partners in Wellness™, we are committed to delivering you quality and innovation at an unbeatable price. Every year, as the end of year approaches, Medisca runs its biggest equipment sale so that customers can further enhance their potential savings. With up to 35% off** this year’s equipment, (this year’s deal) your pharmacy can invest more for less. From hoods, mixers, capsule machines, molds, balances, ovens, and more – we offer significant savings on an extensive portfolio of offerings.
Shop now!
How will you utilize your tax reductions? Will you further invest in your business or simply enjoy the savings?
*The tax savings refers to the amount a business would save in taxes by deducting the full equipment cost from their taxable income, which is permissible according to the IRS Tax Code. Note this relates to federal only and is for demonstration purposes only, and should not be relied on as tax advice.
**Limited time offer until December 15, . Terms and conditions apply. Contact your Medisca Account Executive for more details on this promotion.
Having moved country multiple times, and having worked at several companies (or divisions of) without a strong electronics engineering team, I’ve had to set up more than a couple of electronics labs for myself and my clients. Startups that plan for in-house testing will also need to set up a lab and obtain the right equipment. Sometimes, this all happens on very tight budgets, while others I’ve had a couple of million dollars to play with. I’m going to try to cover a range of budgets in this article, so whether you are a hobbyist, a large company/organization looking to expand into cutting edge electronics, or somewhere in between, you will find what you need for setting up a new lab from scratch.
The equipment selected here comes with the following assumptions:
If you’re just getting started in electronics as a hobby, everything on this list might be slightly overkill; it’s a lot of tools and hardware. If you’re designing and building products even if they are only for your own usage, however, I think you’ll find yourself with everything here eventually, even as a hobbyist or an electronics engineering student.
The budget option will be useful for students and hobbyists, but probably doesn’t have the performance, or perhaps ease of use, for a professional. A professional will be more efficient with the mid or upper range of tools, which are more expensive but pay for themselves in labor savings. A serious hobbyist with a little more money to dedicate for a good tool might look at the middle option rather than the budget one. All options are based on what I’d expect to see in the hands of the target audience; the suggestions focus on total performance and capabilities per dollar, including wages where relevant, rather than just trying to spend lots of money (for the higher end options) or spend the least money (for the low-end option).
I’m very hesitant to recommend specific brands, but if I occasionally do so, it is because I have tried many of the competing brands and wouldn’t use anything else. When it comes to testing equipment for example, it’s because the brand is offering the best specifications for the money in that market segment. I generally won’t buy or recommend something just because a specific brand makes it, as I care much more about the right tool for the job.
These are the components and tools I feel everyone should have on their desk. Whether you’re working on aerospace components or assembling your first PCB, everything here will apply to you.
Soldering Station
There’s a vast difference in the quality of soldering experience between a budget soldering station/iron and a Weller. I can’t recommend enough that you jump straight to a quality Weller soldering iron. Even having used the popular Hakko, I can ascertain that the speed of heat transfer and thermal control of the Weller is superior, and that the pen grip stays cool to the touch after hours of soldering. Working on a PCB with or smaller components connected to a large ground plane very quickly determines the quality of a soldering station. Most stations will sit there warming up the little tiny pad a little bit as the Weller takes the component off in under a second. The Weller is expensive, but none of the half dozen or so top competitors I’ve tried even come close.
If you don’t want to buy the Weller, you will want at least a 60W station with interchangeable tips for which you can purchase replacements easily. When looking at swappable tips, the shorter the tip extends past the iron, the better. A short tip means the tip will be as close to the temperature sensor and heat source as possible, so it will not cool down as rapidly and the temperature the station is set to will more closely match the actual temperature on the tip when working on thicker wire or PCBs with large ground planes.
I don’t personally feel the WE is as worth getting as the WT. The WX is a great option for professionals who are working on PCBs with large ground planes or components with large thermal mass. Both the WT and WX have a large range of pens you can buy separately depending on your requirements in the future. The options above will suit most uses though.
The WT accepts the LT series tips, whereas the WX accepts XNT series tips. Generally, I would not recommend the round/conical tips as it’s harder to get good heat transfer with them due to the limited contact area. The chisel tips come in a wide range of sizes, out of which the 1.6mm, 2.4mm and 3.2mm options are my most used. I happily solder components with the standard 2.4mm chisel.
You’ll also want some accessories for soldering:
You might notice that for soldering, I get very specific about particular part numbers. This is from over a decade of trial and error, and is something you’ll find yourself doing once you find the perfect solution and stick with it. I fortunately had the opportunity to try many products and figure out what works and what does not. The aforementioned suggestions are the products that have worked for me over the years, and I can’t work without them.
After recommending one of the most expensive professional soldering stations, you might be a bit worried at my recommendation for a hot air rework station. Don’t worry, I actually prefer one of the cheapest options on the market! Unlike a solder pen that needs to directly transfer heat reasonably precisely and powerfully into components, a hot air station just needs to heat up air and blow it at your board, wire, or heat shrink. The 858D series hot air rework stations are affordable and allow for precise control over temperature and airflow velocities. If you need to warm up a section of the board, or even reflow the solder completely, the 858D will do the job. It’s also a much better option for heat shrink than a lighter, or a heat gun, with no temperature control.
Whether you’re just getting started in electronics or are designing complex products, building out the project, or at least sections of it, on a breadboard is usually a good idea. If you’re writing firmware, you can ensure all your functionality works prior to committing to a PCB design.
I’m not generally a fan of kits of electronics parts, as I don’t find them very applicable to my designs. However, I do find having a range of through-hole resistors, LEDs and capacitors handy. I haven’t used a through-hole resistor on a production PCB in the past decade, but they are very handy for breadboards and being able to fix mistakes on a prototype PCB. The LEDs might seem like an odd choice, but you can use them on a breadboard or solder them to pretty much any logic line to get a quick visual indication of what state it is in if the line can handle the current draw.
There are plenty more supplies you’ll find yourself needing for prototyping. However, those are generally project specific. You will end up collecting a range of development kits, hardware debuggers, breakout boards, displays, and the like, which will allow you to build up full designs on a breadboard before you commit to a schematic in EDA/ECAD software.
Now, we get to the fun part of setting up a lab – gadgets! Every engineer loves test equipment, but among them, electronic engineers are especially lucky compared to other engineering fields in that they can readily visualize every aspect of their work if we have enough test equipment. For most labs, there are three key pieces of equipment that are required: a Digital Multimeter, an Oscilloscope, and a Logic Analyzer.
I’m also going to add a lab power supply here; it’s not strictly a piece of test equipment, but being able to dial up whatever voltage you require and, more importantly, limit current to a freshly assembled board can rapidly expose a fault without destroying the board.
The multimeter is the most basic piece of test equipment. A good one will let you read AC and DC voltage, AC and DC current, continuity, resistance, capacitance, frequency, and test diodes. They come in two forms; handheld, and benchtop. Handheld units are much more portable, while benchtop units typically have higher precision and additional functionality. One of the major advantages of most benchtop Digital Multimeters is that they allow you to use a 4-wire resistance measurement instead of the typical 2-wire method, which offers greater precision with low resistance values. There are some very low-end benchtop units that have exactly the same functionality and precision as a handheld unit, which I’m going to ignore, as if I had to choose one of them, I’d always go for the handheld.
The main specifications you’ll be looking at in a multimeter beyond its feature set is the resolution in digits or counts, the larger the better. You will also want to ensure the meter has an appropriate safety rating, being either CAT III or CAT IV. You can read more about the categories at National Instruments.
Whether you are new to electronics or an old hand, I’ll always suggest an auto ranging, true RMS meter. Cheaper meters will require you to select the measurement range manually, wasting time that auto ranging would have saved. Having a true RMS meter means you’re reading the actual Root Mean Squared voltage on an AC waveform, rather than just an average voltage.
You should only buy your multimeter from a reputable electronics distributor or test equipment supplier, such as DigiKey, Mouser, Element14/Farnell/Newark, RS Components and the like. By buying from a reputable source, you will ensure that the meter is both genuine and has been through appropriate safety testing. A cheap meter is great, but if you measure AC voltage on the wrong setting (for example, in continuity test mode), some cheaper brands will literally blow up in your hand.
Contact us to discuss your requirements of Engineering Training Equipment. Our experienced sales team can help you identify the options that best suit your needs.
I’ve been using a Fluke 87 handheld meter for more than a decade, and it’s been great. It has lost it’s mA current measuring ability and some of the internal plastic supports broke, so I’ll probably look at upgrading it this year and I will be working off my recommendations here when I do. Despite Fluke’s fantastic reputation and quality, I will be looking at one of the Keysight models below, as I feel Keysight are currently offering more value than Fluke.
If you are setting up a lab for multiple engineers and trying to save money, consider giving each engineer a mid range handheld meter and having a desk set aside with higher end benchtop equipment, which can be used by the team when more precise measurements are called for.
An oscilloscope (scope for short) is one of the most useful tools for developing and debugging electronics. It lets you see the signal on a line (or multiple lines with multiple channels) at very small time scales and very high resolution. There is a huge range of oscilloscopes from several hundred dollars to well over the price of a luxury sports car, or even a family home. The scopes below are well and truly on the lower end of this scale. If you’re setting up a lab for the first time, there’s very little chance you’ll need an oscilloscope that costs several hundred thousand dollars.
There are three critical specifications you need to consider when looking at an oscilloscope, and as this guide is not intended as an in depth guide for buying an oscilloscope, we’ll go over them pretty quickly.
Firstly, you have bandwidth. The bandwidth you require should be at least three to five times the fundamental frequency of the signal you want to measure. If you’re working on a power supply with a 2.5MHz switching frequency, you would need just 12.5MHz of bandwidth. However, if you want to check SPI data clocked at 40MHz, you would be looking for a 200MHz bandwidth scope. If you start looking at LVDS signals to a display, the signal can be clocked at over 100MHz, which will mean you need an oscilloscope with 500MHz of bandwidth. Bandwidth is also one of the primary factors of the cost of an oscilloscope, which increases almost exponentially with bandwidth. The average hobbyist is likely to be very happy with a 50-100MHz oscilloscope. If you’re working professionally, a 200-500MHz scope might be more appropriate depending on your designs.
Second is sample rate. You need at least double the bandwidth as the sample rate for an oscilloscope to function, so five times greater than the bandwidth is good. You’ll find that most modern digital oscilloscopes in the bandwidth ranges we’re looking at here have ten times the bandwidth or more as their sample rate.
Third is memory depth. A larger memory depth is almost always desirable, as it allows you to have longer measurement duration. The duration you can measure at once is a function of memory depth divided by the sampling frequency (i.e., each sample takes up one point of memory). If you have more memory, you can visualise a signal over a longer period of time, or at a finer resolution, which can give you a bigger chance of finding a glitch that is causing your hardware issues.
Oscilloscopes come in several configurations, with most basic oscilloscopes having two channels. I find two channels very limiting, as I’ll typically want a third channel to measure or watch another signal related to the first two. For example, on an H-Bridge, you might be watching two MOSFETs gate pins and also looking at your gate driver IC’s inputs, or on a switched-mode power supply, monitoring the voltage at the input, output, and after a filter. As with many pieces of equipment, it’s usually cheaper to buy something that offers more than you need immediately than have to buy another piece of equipment to meet your needs a few months down the line.
Another configuration option on modern oscilloscopes is a mixed signal oscilloscope, which integrates a logic analyzer into the oscilloscope. At first glance, it might not seem particularly helpful to have a logic analyzer with the small screen of the oscilloscope when compared to a computer connected logic analyzer. In my opinion, the real advantage with the integrated logic analyzer is the ability to trigger on data from the logic analyzer rather than just the standard channel triggers.
As mentioned before, we’re not looking at the high-end scopes here. If you have a team of engineers, I would suggest setting up a desk with high-end equipment as I mentioned in the multimeter section. The basic professional scope above is a great option for each engineer’s desk, with a much higher end scope being on your shared ‘advanced debugging’ desk.
A logic analyzer allows you to easily analyze and decode digital signals. If you’re working with any digital protocol, it can be invaluable to see the communications between devices. Most digital communication protocols you would typically use between a microcontroller or FPGA and sensors can be easily decoded and visualised. This can be very helpful in debugging code that is talking to sensors or external peripherals when you just can’t figure out what's going wrong. Furthermore, logic analyzers are also very useful for reverse engineering if you need to look at the communications between two devices.
As I mentioned above, you can get logic analyzers built into oscilloscopes, and they are fantastic for giving you more trigger options. Nevertheless, the triggering options for oscilloscopes can also be very expensive, and the relatively small screen of an oscilloscope doesn’t offer the best user experience when working with device communications.
For USB logic analyzers, there’s two main options, the very cheap Jiankun/Kingst and the much more expensive Saleae units. I’ve used both and whilst the Jiankun provides incredible value for money, the user interface can be buggy and struggles with higher speed communications. The PC software is a clone of the older Saleae software. The LA is perfect for hobbyists or professionals on a budget. On the other hand, Saleae’s superior software is better for professionals who don’t have time to waste on glitches and bugs. The Saleae Logic Pro’s USB 3.0 connection allows continuous streaming of samples, whereas the LA uses USB 2.0 and the sample length will depend on the rate you are sampling the inputs at.
As someone regularly designing new PCBs, a quality lab power supply is critical for my lab desk. A simple mistake in a schematic or PCB layout can easily result in a newly assembled board drawing a lot more current than it should. Not to mention, there may be a short on the board you missed during assembly. By powering up the board with a current controlled power supply, you can set the current limit to just a bit higher than what you expect the operating current of the board to be. This way if the power supply immediately starts in constant current mode, rather than constant voltage, you will know that there is potentially an issue with the board, and you can do some extra diagnostics without letting the magic smoke out.
You can also use a good lab power supply to generate voltages you might be able to easily obtain from batteries, which will allow you to power up LEDs, motors, solenoids, and the like with ease, as well as watch their current draw in real time. Most modern digital power supplies have good current metering capabilities, which leaves your multimeter free for voltage checking on the board rather than monitoring current draw.
A lot of very cheap switched-mode power supplies have large capacitors on their outputs, which makes them a poor choice for powering up electronics for the first time. If you plug the device under test into the power supply when it’s already switched on, no matter what the current limit is set to, you will have all the energy available in that capacitor available to you instantaneously, which can vaporize almost any circuit or LED you test. If you plug the device in with the power supply switched off, then turn it on when you are ready to test, you will have to account for the inrush current of that large capacitor when calculating your current limit. Once that capacitor is charged, your circuit will receive the full benefit of that higher current limit, which may be enough to damage a poorly placed or incorrect value component. Therefore, I won’t be including any low cost switched-mode power supplies here.
A good indicator of a quality power supply is weight; linear power supplies are very heavy due to the large heatsinks inside. A cheap, poor quality power supply will have a weight that is a fraction of a similarly rated high quality supply.
The Rigol in the top spot over options from Keysight, Tektronix, Keithly and B&K Precision, the traditional champions of benchtop test equipment, might seem a little odd. However, this is based on my experience of using a DP832A for several years. The DP832A packs a lot of functionality into the power supply with some great analysis tools, as well as being a high quality power supply. With a several million dollar budget, I was hard pressed to find a better option than the Rigol for day to day operational use.
Beyond the test equipment previously mentioned is a vast range of specialised test equipment, as well as highly specialised versions of the equipment above. Due to the more application specific nature of this equipment, we will not look at specific models, but give you an idea of what you might use each piece of equipment for.
Most mid-range and high-end oscilloscopes have basic function generators built-in, which can handle most use cases for a function generator, but sometimes you need a signal more complex or specialized than these can generate. For under $200, you can purchase a single channel arbitrary function generator with a lot more functionality than what is offered by those built into an oscilloscope. If you need to generate RF signals or other very high frequency signals or protocols, there are options well into the tens of thousands of dollars.
On the very basic end of applications, a function generator can be very useful to characterise logic devices and test analog components. If you have an issue with a clock on a device, you can easily substitute it with a signal from the function generator. Using more advanced function generators, you can simulate complex waveforms or protocols, allowing you to create RF signals and emulate RF protocols such as Bluetooth, WiFi, or cellular protocols, or more basic communication protocols like CAN, SPI or I2C.
If you’re working with power supplies, batteries, or solar cells, then a programmable load might be just what you need to make testing easier. A programmable load allows you to stress test a power supply with extreme precision. Typically, you will find them capable of acting in constant current, constant resistance, or constant power dissipation modes. You can program a test profile to simulate a device, or simply constantly absorb energy. The most basic units will be under $200, and you can easily spend tens of thousands of dollars on advanced units with fast slew rates and pulsed load profiles into the range of hundreds of kilowatts.
Even when working with modest amounts of current, you can quickly overheat ICs causing them to shut down or be damaged. When working on projects with high current draw, a thermal imaging camera can quickly diagnose these issues without gluing temperature probes all over the circuit board. The thermal camera sees long wave infrared (radiated heat) rather than the visible light spectrum like a regular camera. Having a thermal camera can be invaluable to visualise the thermal dissipation paths of a circuit board as well as peak and average temperatures. A few hundred dollars will buy you a low resolution camera that can attach to your smartphone, and a few thousand dollars will buy you a higher precision and resolution handheld model.
If you’re looking to buy a thermal camera, consider buying a can of black spray paint as well. Bare metal will reflect infrared light which makes it impossible to see the temperature of solder, RF shields and exposed copper. By spray painting the entire board black, the camera is easily able to see the thermal emissions.
If you are working directly on radio frequency devices that are creating or receiving radio signals, you will likely want to purchase some specialised RF test equipment.
The most basic piece of test equipment for RF testing is the Spectrum Analyzer, which allows you to analyze the RF spectrum and power levels. This can be used for debugging an RF circuit, watching devices talk to each other, and basic compliance testing. Spectrum Analyzers are relatively expensive pieces of test equipment and get exponentially more expensive as the frequency increases. Lower cost options exist as Software Defined Radio (SDR), which use your computer's screen and processing power to analyze the signal.
If you are laying out RF circuitry or designing antennas, a network analyzer can allow you to quickly tune and optimise the RF path and components. Network analyzers are available as either a Scalar Network Analyzer (SNA) or a Vector Network Analyzer (VNA). The scalar network analyzer is much more cost effective if you only need to see amplitude at frequency, allowing you to measure VSWR and reflectance. While most large test equipment vendors no longer make SNAs, if VSWR and reflectance values are sufficient for your testing, some benchtop spectrum analyzers and many SDR spectrum analyzers integrate a tracking generation function which allows the spectrum analyzer to act as a SNA.
A Vector Network Analyzer, on the other hand, allows you to visualise both amplitude and phase. This enables you to generate Smith Charts, which can be used to very rapidly tune a circuit or an antenna, or to characterize a device.
On the most basic side of RF test equipment, you can use a frequency counter to find the primary frequency of a radio transmission. This can be useful for confirming the output frequency of a basic RF transmission with no sidebands or any frequency hopping. Additionally, an RF Power Meter can display the RF power coming from the circuit, giving a very accurate indication of the amount of power it generates. A spectrum analyzer makes these measurements much easier and more visual, but is far more expensive.
Data acquisition units can be very useful in the lab as they have a variety of purposes. You can think of them as multi-channel digital multimeters with logging functionality. This can be very useful for failure analysis, production pass/fail testing, and rapid testing of cable harnesses.
By monitoring many channels on the board at once for long periods of time, any failure can be more readily analyzed to determine what went wrong.
With the many channels available, you can build a custom test fixture for a production device to read voltage, current, light or any other digital or analog signal rapidly and precisely from test points. This can be much faster than developing software on a microcontroller to make all these readings.
Finally, if you have a complex cable harness, you can use an acquisition unit, owing to its large number of channels, to rapidly build a custom harness tester to not only check continuity between connectors, but also look at voltage drop or capacitance over the cable to ensure it is correctly crimped and terminated.
Finally, I find storage one of the biggest battles in the electronics lab. Being able to store excess components from prototyping, spare PCBs and even just storing tools is fundamental to any work space. You can never have enough storage, and it tends to be an ongoing process of optimization to have some desk space and shelf space remaining, yet also have everything you need close at hand.
Here are some quick ideas for you.
Want more information on Vocational Education Equipment? Feel free to contact us.